*Self Organising Ants in a Sugar Jar.*

Organic cells
may be small but they are nevertheless large atomic configurations of many
billions of atoms. Even so, in terms of atomic count they are a lot smaller
than the multicellular organisms they define. Since multicellular organisms
“unwind” from single cells, the potential in single cells amounts to a kind of data
compressed way of describing the organism they generate

^{*1}
Embarking on a computation that used the method of
randomly searching for a configuration of atoms that constituted a viable multicellular
organism would be an impractically long job because obviously the class of viable
organisms is very likely going to be an extremely small fraction of all
possible configurations of atoms.

However, a computation to find a viable organic form
could be shortened considerably by randomly searching for a single cell that
mapped to a viable organism; after all, a single cell contains a lot fewer
atoms. Even so, it would still, of course, be an impractically long job. But
the principle is there: Searching for the single cell “algorithms” that
generate living forms is a lot less computationally complex than directly
searching for the full grown organism.

^{*2}.
Since cells effectively constitute algorithmic encodes
of the multicellular organisms they generate then, as I have already said, they
can be thought of as “data compressed” versions of the much more extensive
multicellular configurations. The question naturally arises, then, as to
whether further data compression can take place. That is, can organic forms be
encoded in even more succinct “algorithms” than single cells? I am, of course,
thinking of our physical regime as it is encoded in the laws of physics and the
question of whether via “self-organization” (=OOL and evolution)
living structures are implied with a realistic probability given the age of the
cosmos. Measured in the bit lengths needed to define them, these laws are going to be expressible in something quite a bit shorter than that needed to
directly encode a multicellular form or even a single cell.

Let’s just say for the sake of argument that the laws
of physics can be expressed in a few thousands of bits of information. That’s definitely
going to be quite a bit shorter than the trillions of trillions of bits needed
to describe organic forms directly. So, if
a suite of physical laws exist which imply a universe capable of generating
life in reasonable time, then randomly searching through a “mere” few thousand
bits is a lot quicker than randomly searching the number of bits needed to
describe a working organic form whether unicellular or multicellular.

^{*3}
***

When I suggested to IDist Richard Johns
that it is still yet possible (given the state of our knowledge) that our
particular physical regime may have given rise to organic forms via
self-organisation he said:

*But even in that case, self-organisation theories of evolution will be in a difficult position. For they will then be committed to the claim that living organisms are algorithmically (and dynamically) simple. In other words, living organisms are like Pi, merely *appearing* to be complex, while in fact being generated by a very short program. (Vastly shorter than their genomes, for example.)*

My reply was:

*One more thing: Imagine that you were given the problem of Pi in reverse; that is you were given the pattern of digits and yet had no clue as to what, if any, simple algorithm generated it. The hard problem then is to guess the algorithm – generating Pi after you have found the algorithm is the easy problem. So to me life remains algorithmically complex even if it’s a product of Self-Organisation*

And that latter statement becomes clearer in the scenario
I have been developing above: For if a suite of laws exist capable of
generating organic forms with reasonable probability within reasonable time then
we still have to search through all the combinations available to thousands of
bits: In terms of the age of the cosmos that is still a hugely impractically
long job! So even if life can be generated by the laws of physics life it can
hardly be classified as algorithmically simple! Yes, life would be
algorithmically

*simpler*but far from simple in*an absolute sense!*

__Footnotes:__
*1 Strictly I am not talking here about data compression
as it is understood practically in data processing where an algorithm must
create a one to one map between a
compressible object and its compressed version and allow a reversible
transformation from one to the other to take place. In the more general idea I
am putting forward here the transformation may be neither reversible nor one to
one. (In fact, as we have in “lossy” Jpeg compression). Moreover, physical
algorithms don’t necessarily have the halting properties that effectively say
“we have arrived at the required configuration!”. In the “compression” I'm talking about here,
all I'm looking for is a general enlargement of the size of the data field via
the application of the physical algorithms: The map here is a much more fuzzy concept
whereby the law and disorder suite is simply required to generate viable
organisms with a reasonable probability within reasonable time.

*2 Clearly a random search is certainly not the most
efficient way to search an exponential tree! Systematic searching may arrive at
a solution much faster (although in worst case scenarios systematic searching
can be even longer than a random search). However, random search, in having no particular
systematic bias (i.e. no initial information) can be used as a kind of standard measure of computational
complexity; it’s a bit like defining the distance to the stars using the time a
snail would take to crawl there. Using random search as the fundamental unit of complexity measure only has the effect of introducing a very
large constant of proportionality in the exponential expression for computation
time. Random search, as it were, gives us a likely upper limit on the search
time with respect to a process defined with respect to a kind informational
absolute zero; that is, it is measured from the absolute zero of a “know nothing, learn nothing” perspective.

*3 Here I haven’t
mentioned that the computation required to determine whether we have reached a life
generating universe includes a (polynomial time) verification that it is capable
of generating a life; the only sure-fire way of doing this is to run the scenario
through to see if it does produce life,
which of course would require a universe life time! This simply changes the
constant of proportionality in the time complexity expression.

## No comments:

Post a Comment