The Big But
Complex system theory, when applied to human beings, can be very successful. It is an interesting fact that many measurable human phenomena, like the size of companies, wealth, Internet links, fame, size of social networks, the scale of wars, etc are distributed according to relatively simple mathematical laws - laws that are qualitatively expressed in quips like “the big get bigger” and “the rich get richer”. It is an interesting fact that the law governing the distribution of, say, the size of social networks has a similar form to the distribution of the size of craters on the moon. It is difficult to credit this given that the objects creating social networks (namely human beings) are far more complex than the simple elements and compounds that have coagulated to produce the meteors that have struck the moon. On the other hand, there is an upper limit to complexity: complexity can not get any more complex than randomness and so once a process like meteor formation is complex enough to generate randomness, human behavior in all its sophistication cannot then exceed this mathematical upper limit.
Complex system theory, when applied to human beings, can be very successful. It is an interesting fact that many measurable human phenomena, like the size of companies, wealth, Internet links, fame, size of social networks, the scale of wars, etc are distributed according to relatively simple mathematical laws - laws that are qualitatively expressed in quips like “the big get bigger” and “the rich get richer”. It is an interesting fact that the law governing the distribution of, say, the size of social networks has a similar form to the distribution of the size of craters on the moon. It is difficult to credit this given that the objects creating social networks (namely human beings) are far more complex than the simple elements and compounds that have coagulated to produce the meteors that have struck the moon. On the other hand, there is an upper limit to complexity: complexity can not get any more complex than randomness and so once a process like meteor formation is complex enough to generate randomness, human behavior in all its sophistication cannot then exceed this mathematical upper limit.
The first episode of the “The Trap”, screened on BBC2 on 11th March 2007, described the application of games theory to the cold war (a special case of complex system theory). The program took a generally sceptical view (rightly in my opinion) of the rather simplistic notions of human nature employed as the ground assumptions in order that games theory and the like are applicable to humanity. To support this contention the broadcast interviewed John Nash (he of “Beautiful Mind” and “Nash Equilibrium” fame – pictured) who admitted that his contributions to games theory were developed in the heat of a paranoid view of human beings (perhaps influenced by his paranoid schizophrenia). He also affirmed that in his view human beings are more complex than the self-serving conniving agents assumed by these theories.
Like all applications of mathematical theory to real world situations there are assumptions that have to be made to connect that world to the mathematical models. Alas, human behaviour does, from time to time, transcend these models and so in one sense it seems that human beings are more complex than complex. But how can this be?
To be continued....
No comments:
Post a Comment